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Abstract

We study a reaction—diffusion—advection model for two ecologically equivalent competitors with differ-
ent dispersal strategies inhabiting a spatially heterogeneous environment. The competitors represent differ-
ent phenotypes of the same species. One is assumed to disperse by simple diffusion, the other by diffusion
together with directed movement toward more favorable environments. We show that under suitable con-
ditions on the underlying spatial domain, the competitor that moves toward more favorable environments
may have a competitive advantage even if it diffuses more rapidly than the other competitor. This is in con-
trast with the case in which both competitors disperse by pure diffusion, where the competitor that diffuses
more slowly always has the advantage. We determine competitive advantage by examining the invasibility,
i.e. stability or instability, of steady states with only one competitor present. The mathematical approach is
a perturbation analysis of principal eigenvalues.
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1. Introduction

The effects of dispersal on population dynamics, ecology, and evolution have been widely stud-
ied from a variety of viewpoints; see for example [1-7] and the references cited in those works. A
natural question about dispersal is to determine which patterns of dispersal can be expected to
confer some sort of selective or ecological advantage. This question has been examined by a num-
ber of investigators using various modeling approaches, including but certainly not limited to
McPeek and Holt [2], Belgacem and Cosner [8], Holt and McPeek [4], Dockery et al. [5], Hutson
et al. [6] and Cosner and Lou [9]. An important distinction is made by McPeek and Holt [2] be-
tween unconditional dispersal, which does not depend on habitat quality or population density,
and conditional dispersal, which does depend on such factors. Passive diffusion, as considered
by Dockery et al. [S]and Hutson et al. [6], is a type of unconditional dispersal. Diffusion combined
with directed movement upward along resource gradients, as considered by Belgacem and Cosner
[8] and Cosner and Lou [9], is an example of conditional dispersal, because the bias in the direc-
tion of dispersal depends on the spatial distribution of resources. There is evidence based on mod-
eling that for unconditional dispersal in spatially varying but temporally constant environments
slower dispersal rates can confer a selective advantage. This was shown in the context of a simple
two-patch discrete time model by McPeek and Holt [2] and in the context of diffusion models by
Dockery et al. [5]. However, for unconditional dispersal in environments that vary both in space
and over time faster dispersal rates may be advantageous in both simple two-patch models [2] and
diffusion models [6]. McPeek and Holt [2] also showed that in spatially variable but temporally
constant environments certain types of conditional dispersal can confer a selective advantage,
again in the context of simple two-patch models. In diffusion-advection models for a single pop-
ulation in a spatially varying but temporally constant environment, Belgacem and Cosner [8] and
Cosner and Lou [9] showed that conditional dispersal involving both diffusion and directed move-
ment up resource gradients can sometimes (but not always!) make persistence more likely. The
purpose of the present article is to study that type of conditional dispersal in context of compe-
tition between two populations that are ecologically identical except in their dispersal mecha-
nisms. This approach is very similar to that taken by Hutson et al. [6], and somewhat similar
to but simpler than the approach taken by Dockery et al. [5]. The idea is to think of the compet-
itors as representing different phenotypes of the same species which differ only in their dispersal
behavior and to ask which type of dispersal behavior confers a competitive, and thus presumably
selective, advantage.

The specific modeling approach we take is to begin with a diffusive Lotka—Volterra model for
two identical competitors in a closed but spatially varying environment and then perturb the mod-
el by changing the diffusion rate for one competitor while simultaneously changing the diffusion
rate and introducing advection up resource gradients for the other. The modeling of movement
toward more favorable habitats by introducing an advection term was done ad hoc in [8,9] but
can be derived from a mechanistic analysis of individual movement via transport equations; see
[10]. We assess whether or not this confers an advantage for either competitor by examining
the invasibility of states where only one competitor is present by the other competitor. Mathemat-
ically, such states will be invasible if they are unstable but will not be invasible if they are stable. If
the first competitor can invade when the second is at equilibrium but the second competitor
cannot invade when the first is at equilibrium then the first competitor has an advantage in
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competition. We will determine the stability (i.e. invasibility) of single-species equilibria by a per-
turbation analysis of the principal eigenvalues of linearizations of system around those equilibria.
Our conclusions are consistent with those of McPeek and Holt [2], namely that conditional dis-
persal can sometimes confer an advantage. However, Cosner and Lou [9] have shown that move-
ment upward along resource gradients is not always beneficial for a single population, even in
closed environments. Conditional dispersal can be expected to confer a competitive advantage
only in cases where it is beneficial for a single species. Some cases where movement upward along
resource gradients is always beneficial are when the underlying spatial environment is convex or
one-dimensional; see [9] for further discussion of this point.

In the second section of this paper, we describe the models and review the mathematical back-
ground needed for their analysis. In the third section, we perform the perturbation analysis. In the
fourth section, we describe the conclusions in relatively nonmathematical terms. Some of the
proofs of mathematical results are given in Appendix A.

2. Model formulation and mathematical background

To analyze the combined effects of random and directed movement on competition we consider
a situation where two competitors are ecologically identical in terms of their utilization of resourc-
es but may differ in their patterns or rates of dispersal. This is the same approach that was used by
Dockery et al. [5], but we will make different assumptions about the dispersal patterns of the two
competitors. Specifically, we will assume that there is a random component to the dispersal of
both competitors but that when resources are distributed in a spatially heterogeneous way, one
of the competitors also has a tendency to move upward along the resource gradient while the
other does not. Such directed motion introduces a drift or advection term into the diffusion equa-
tion which describes random dispersal. Dispersal models for a single species which incorporate
diffusion and movement up the resource gradient were considered by Belgacem and Cosner [§]
and Cosner and Lou [9]. In those papers it was shown that directed movement up the resource
gradient is beneficial to the population in some cases but not others, depending on the underlying
spatial structure of the environment and the distribution of resources. Dockery et al. [5] showed
that if two or more competitors inhabiting a temporally static environment are ecologically iden-
tical and the competitors all disperse by random diffusion, then reaction—diffusion models predict
that the one with the lowest diffusion rate will have a competitive advantage over the others. We
will see that this conclusion may be modified if one of the competitors has a tendency to move
upward along resource gradients, but only in cases where such directed movement would be ben-
eficial to that competitor by itself in a single-species model. '
We will now formulate our reaction-advection—diffusion model for dispersal and competition.
Suppose that Q@ C R" is a bounded domain with 8Q2 smooth. Let u and v denote the population den-
sities of two competitors on , and let m(x) represent a local population growth rate which depends
on location. We will assume that m € C***(Q) so that we may use standard elliptic regularity theory.
We envision that the local population growth rate m (x) reflects the quality and quantity of resourc-
es available at the point x. If both competitors have a random component to their dispersal but the
competitor with density u also responds to the gradient of m by moving upward along it, the dis-
persal of the two competitors may be described in terms of the fluxes J, = —uVu + a(Vm)u and
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J, = —vVu. (See[3]for a discussion of how advection—diffusion equations can be derived in terms of
fluxes, and [10] for a mechanistic derivation from transport equations.) To correctly describe diffu-
sion we must have u,v > 0. Also, to capture the hypothesis that the first competitor has a tendency
to move up the gradient of m we will assume o > 0. If we assume there is no flux across 02, that is,
individuals do not cross 002, we obtain the competition model

%?:V-[uVu-—ocuVm]—i—(m—u—U)ua 2.1)

%?:V-[vVv]+(m~u——v)v on Q x (0, 00), |
with boundary conditions

Ju.ﬁ—_—u%—au%%:& (2.2)

. ov
J,,-nzvég,zo on 992 x (0, 00),

where 7 denotes the outward normal to 0Q. The boundary condition on v is a standard Neumann
condition. The no-flux boundary condition on u would be a classical Robin condition if
Om /o7 < 0 on 0Q, but we do not want to impose that extra restriction on m. Note, however, that
if we let w = e~®¥"™y then the system (2.1) becomes

% = pVPw + oaVm - Vw + [m — e — v, (2.3)

% = W2+ [m— ¥y — v on Q x (0, 0), |
where the boundary conditions (2.2) become

%%f =0, % =0 on dQ x (0,00). (2.4)

The system (2.3) and (2.4) is now cast as a Lotka—Volterra competition model with classical Neu-
mann boundary conditions. Thus, (2.3) and (2.4) generate a semiflow on various function spaces
which is monotone with respect to the ordering (wy,v;) < (W, v7) if wy < wy and vy > v,. (See for
example [7,11,12].) Since (2.3), (2.4) is equivalent to (2.1), (2.2), and the map from w to u corre-
sponds to multiplication by a positive function, these properties are shared by (2.1), (2.2) despite
the possibility of nonclassical Robin boundary conditions on u in (2.2).

A considerable amount of the behavior of the system (2.1), (2.2) is determined by its equilibria
and their stability properties. We will briefly review some of the standard results about how the
dynamics of two-species competition models are influenced by their equilibria. For a more com-
plete and detailed discussion, see [7] or [11]. The first observation is that the system admits solu-
tions (u,0) and (0,v) where u and v are solutions to the logistic equations

%Lti =V [uVu — auVm] + (m —u)u on Q x (0, 00),
Ou Om
“éﬁ_duﬁ— 0 on 02 x (0,00),

(2.5)
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and
ov 5
—a—=vV v+ (m—2v)v on Q x (0,00),
af; (2.6)
—é%zO on 92 x (0, c0).
As in (2.3), (2.4) we can set w = e~ "y in (2.5) to obtain the equivalent form
%X:— = V2w + aVm - Vw + (m — e¥myw)w  on Q x (0, c0),
(2.7)
ow
i 0 on 8Q x (0,00).

The behavior of diffusive logistic models such as (2.6) or (2.7) (and hence (2.5)) is fairly simple. If
the equilibrium v = 0 in (2.6) is stable then all positive solutions to (2.6) approach zero as t — co;
if v =0 is unstable then (2.6) has a unique positive equilibrium 7 which is globally attracting
among positive solutions. (See for example [7,11].) Similarly, if u = 0 is stable in (2.5) then all
positive solutions approach zero as ¢ — oo while if ¥ =0 is unstable then (2.5) has a unique
positive equilibrium # which is globally attracting among positive solutions. (To apply the stan-
dard results directly it may be necessary to work with the equivalent form (2.7) because of the
boundary conditions.) If (u;,v,) is a solution of (2.1), (2.2) then u; is a subsolution of (2.5), so
in the case of (2.5) where the equilibrium u = 0 is stable, we must have u; — 0 as ¢t — oo. (This
follows from the fact that when « = 0 is stable in (2.5) all positive solutions of (2.5) approach zero
as ¢ — oo together with the fact that we can compare u; with the solution to (2.5) having initial
data u(x, 0) =u;(x,0).) The situation for (2.6) is analogous. We are interested in cases where
the coefficients u, «, and v can influence the outcome of competition, and we will study those
via perturbation of the case where p=v and « = 0. The stability of the equilibria # =0 and
v =0 in (2.5),(2.6) depends on the signs of the principal eigenvalues of the linearizations about
0 of the operators on the right hand sides of those equations. Those eigenvalues in turn depend
continuously on u, v, and «, so to obtain any behavior other than extinction in (2.1), (2.2) we need
to start with a value of u for which u = 0 is unstable in (2.5) for o = 0 and v = 0 is unstable in (2.6)
for = v. The stability of v = 0 in (2.6) is determined by the sign of the principal eigenvalue of the
problem

Wi+ mx)y = o on Q,
2.8

g-l-p; =0 on 0L. ( )

on

If the principal eigenvalue is positive, then v =0 is unstable. Similarly, w =0 in (2.7) and thus

u =0 in (2.5) is unstable if the principal eigenvalue for

uVi +aVm - Vi +my = o) on Q,

2.9
% =0 on0Q (_ )
Gl

is positive. The principal eigenvalue for (2.8) will be positive for all v> 0 provided that
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/m(x)dx > 0; (2.10)
Q
see for example [7]. We will assume that (2.10) holds. It follows as in [9], Proposition 2.1, that
/ m(x)e@Hme) dx > 0 (2.11)
Q

for o = 0; also, (2.11) holds by continuity for « in a neighborhood of o = 0. If (2.11) holds then
the principal eigenvalue in (2.9) is positive so w = 0 in (2.7) or equivalently # = 0 in (2.5) is unsta-
ble. See [7,8,13-15] for further discussion of this and related points. In what follows we will as-
sume that (2.10) holds, so that for positive y, v, and « the logistic models (2.5) and (2.6) have
positive equilibria #, o which are unique and globally attracting among positive solutions.

Definition. The positive equilibria to (2.5) and (2.6) will be denoted as # = #i(u,a) and 7 = 3(v),
respectively.

Just as the behavior of the logistic models (2.5), (2.6) depends largely on the stability of the
equilibria # = 0, v = 0, the behavior of the system (2.1), (2.2) depends largely on the stability of
the semi-trivial equilibria (4, 0) and (0, D). If (i, 0) is stable then solutions to (2.1), (2.2) with initial
data near (i1, 0) will approach (i, 0) as t — oo; thus, in that case, a small number of individuals of
species v cannot invade the system if u is established at the equilibrium #. If (#, 0) is unstable, then
solutions (u,v) of (2.1), (2.2) with initial data close to (i1,0) will converge to some equilibrium
(u*,v") of (2.1), (2.2) with #* < @& and v" > 0. Thus, in that case, a small number of individuals
of species v can invade the system when u is already established at the equilibrium #%. Similarly,
if (0, ) is stable then a small number of individuals of species u cannot invade the system when
v is already established at equilibrium, while if (0, 7) is unstable then the system is invasible by u
when v is established at equilibrium. (See [7,11] for additional discussion and references on com-
petition models.) Because of the properties described above, it is reasonable to conclude that u has
a competitive advantage over v if (i1, 0) is stable but (0, ?) is unstable; similarly, v has an advantage
over u if that situation is reversed. The stability of (i, 0) and (0, ) is determined by the signs of the
principal eigenvalues of the linearizations of (2.1), (2.2) about (i,0) and (0, 9). The main goal of
the present paper is to understand the dependence of those principal eigenvalues on y, v, and a.
Specifically, (i, 0) is stable if the principal eigenvalue for the problem

W+ (m — @)y = o on Q,

-a—‘ﬁ= 0 on 0%,
on

is negative, and unstable if it is positive. Similarly, (0, ) is stable if the principal eigenvalue for
V. [uVY — oy Vm| + (m — ) = oy on Q,

oy om
i oa//é-;_i: =0 on 04,

(212)

(2.13)

is negative and unstable if it is positive. (For additional discussion, again see [7] or [11].) As be-
fore, we can rewrite (2.13) as
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UV +aVm -V + (m—9)¢p = on Q,
0 ' 2.14
——-(_—é =0 on 00, ( )
on
by taking ¢ = e~ ¥}, We will examine the effects of the diffusion rates x and v and the rate of
directed movement o on the dynamics of the competition model (2.1), (2.2) by studying how the
principal eigenvalues in (2.12) and (2.13) (equivalently (2.14)) depend on those rates.

3. Mathematical analysis

The main results of this paper will be based on a perturbation analysis of the principal eigen-
values of (2.12) and (2.13). That perturbation analysis is based on the following lemma:

Lemma 3.1. Suppose that ug,vo>0 and og > 0. The map from R* to C?**9(Q) given by
(, o) —ii(p, o) is differentiable in some neighborhood of (uo,00). The map from R to C**%(Q)
given by v—75(v) is differentiable in some neighborhood of vo. Let oo(i, v, &) and to(l, v, @) denote the
principal eigenvalues of (2.12) and (2.13) respectively; then for (u, v, o) in some neighborhood of (i,
Vo, 00), 0o (i, v, &) and to(u, v, o) depend differentiably on u, v, and o. The corresponding normalized
eigenfunctions also depend differentiably on u, v, and o in a neighborhood of (1o, Vo, %).

A proof of the Lemma is given in Appendix A. Related results are discussed in [7,8,16,17].

To assess the effects of diffusion and directed movement on competition, we will examine the
results of perturbing the parameters (u, v, o) in (2.1) from (ug, o, 0) for some py> 0. When
u=v=pgand a = 0, the single species equilibria # and ? of (2.5) and (2.6), respectively, are given
by # = v = 6 where 4 is the unique positive solution of

1oV20 + (m(x) —0)0 =0 in Q,

92:0 on 0. 3D

on
Let (u, v, o) =(u(s), v(s), a(s)) where pu(s), v(s), and «fs) are smooth functions with
1(0) =v(0) = po and «(0) = 0. Observe that when u = v = ug and « = 0, i.e. when s =0, we can
choose ¥ = ppf > 0 in (2.12) with 6 =0 and ¢ = pef > 0 in (2.14) with ¢ =0 for any positive
Ppo- Thus, we have oo(ug, to, 0) = to(Lo, o, 0) = 0, since the principal eigenvalues of (2.12) and
(2.14) (recall that (2.13) and (2.14) are equivalent) are the unique eigenvalues with positive eigen-
functions. To be consistent with the formulations given in the proof of Lemma 3.1, we would
choose po = (1/]a szx)l/ 2 and require that the eigenfunctions o and ¢ corresponding to o
and tg, respectively, satisfy

/anﬁdx: 1, /Qe(“/”)”’qbgdx= 1. (3.2)

(Here o corresponds to (2.12) and ¢q to (2.14).) It then follows from Lemma 3.1 and the assump-
tions on (u(s), v(s), a(s)) that we may write the parameters yu, v, o, the equilibria #, 7, the normal-
ized eigenfunctions ¥, ¢o and the principal eigenvalues og, to as
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b= o+ sy +o(s), v=pg+svi+o(s), o=as+os),

i=0+ws+o(s), D=0+uvs+o(s), (3.3)
Yo =pob+ s +o(s), ¢o=pof+ dis+o(s),

oo = 018+ 0(s), 7o =115+ o(s).

By using (2.1), (2.12), and (2.14), we can compute ¢, and 7 in terms of m, 8, uy, vi, and o. The
details are shown in Appendix A. We obtain

o) [o|VOP dx + oy [,0V0 - Vmdx
‘ [, 0% dx '

Discussion. Recall that the stability of the equilibria (iZ,0) and (0,%) depends on the principal
eigenvalues oo and 7o, respectively. If o <0 then (&, 0) is locally stable, that is, it is not invasible
by v for low densities of v. If o > 0 then (&, 0) is invasible by v. Similarly, if 7o <0 then (0, ) is
stable, that is, not invasible by u at low densities of u, while if 7o > 0 then (0, 9) is invasible. For (g,
v, o) = (Lo, Mo, 0) we have g = 79 = 0; thus, for small perturbations of (1o, o, 0) in the direction of
(11, v1, o) the signs of g and 1 are the same as those of o; and t;. Notice that t; = —ay, so if 0,
and t; are nonzero the perturbation has opposite effects on the signs of ¢; and 7;. In the case
a; =0, (3.4) implies that the sign of ¢, is the same sign as y; — v; while 71 has the opposite sign.
If m(x) is nonconstant we have V8 # 0 for some x, so we have g; <0 and hence g <0 for small s
if v; > y;. Similarly t; > 0 and so 1o > 0 for small s if v; > py. In that situation (&, 0) will not be
invasible by v but (0, %) will be invasible by ». Hence the competitor with the lower diffusion rate,
in this case u, will have the advantage. This is consistent with the results of Dockery et al. [5]. If
o; # 0 the situation depends on the sign of o 8V6:Vm dx and the relative sizes of y;, vy, and o.
We will now examine the sign of that integral. The analysis is closely related to the results of [8,9]
on the effects of directed movement in single-species logistic models with diffusion and advection
along resource gradients. That is not surprising, because movement upward along the resource
gradient can be expected to contribute toward an advantage in competition if it is beneficial
for a single species.

Ty = =

(3.4)

Lemma 3.2. The integral [g0V0-Vm dx is positive if Q C R is an interval or if @ C R" is convex.

A proof of the lemma is given in Appendix A.

If n > 2 there exist nonconvex domains 2 C R" and growth rates m such that the integral is
negative. This phenomenon can occur in situations analogous to those studied in [9] where move-
ment upward along environmental gradients is harmful in single-species models. The requirement
that 2 must be convex to insure that the integral in Lemma 3.2 is positive if n > 2 is not surpris-
ing, because there are examples of nonconvex domains where movement upward along resource
gradients can be disadvantageous in single-species models; see [9]. We explore this topic further in
another paper [18].

In the present paper, we study the case where « is small. In [18], we consider what happens when
o is large. It turns out that taking o to be large enough can mediate coexistence in models like
(2.1). A large value of « can cause the competitor that moves up gradients of m(x) to concentrate
near peaks of m(x) but have small densities elsewhere, thus leaving room for the other competitor;
see [18] for details.
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Our main result now follows immediately from (3.4) and Lemma 3.2:

Theorem 3.3. Suppose that Q C R or that Q C R" and Q is convex, so that

/9V9-dex>0.
Q

Let (p, v, ) = (uo + pys + 0(s), po + vis+ o0(s), a1s + 0(s)). Then for s > 0 sufficiently small we
have

oo, v,a) <0 < 1o, v, ) (3.5)
provided that
o > (g — i) [/ |V9|2dx// ove - dex]. (3.6)
Q Q o

Proof. Recall that ag(uo, to,0) = to(po, tto, 0)=0. By Lemma 3.1 it follows that for s>0
sufficiently small the signs of g and 7y are the same as those of ¢; and 7, respectively. By (3.4)
o1 <0 and 7; > 0 if (3.6) holds. [J

Definition. If v; > p;, so that the perturbation from (u, v) = (1o, Uo) causes v > u for s > 0 small
then (3.6) holds with o; = 0. In other words, a perturbation which causes the diffusion rate for
the second competitor to exceed that of the first competitor always favors the first competitor.
This is consistent with Dockery et al. [5]. However, even when u; > v;, so that the perturbation
makes the diffusion rate of the first competitor larger than that of the second, the first competitor
may still gain an advantage if «; > 0 is large enough that (3.6) holds. The implication is that the
advantage gained from directed movement upward along resource gradients can counterbalance
the disadvantage created by more rapid diffusion.

4. Conclusions

Our analysis shows that in the context of reaction—diffusion—advection models with environ-
mental variation in space but not in time, conditional dispersal can sometimes confer a compet-
itive advantage. Specifically, directed movement upward along resource gradients can be
advantageous, even if it is accompanied by an increased rate of random diffusion. In general terms
this conclusion is consistent with results of McPeek and Holt [2] on discrete-time two-patch mod-
els. In single species models such directed movement is not always beneficial, but is is beneficial if
the underlying spatial environment is convex [9]. To conclude that directed movement can confer
a competitive advantage requires analogous assumptions. Dockery et al. [5] showed that without
directed movement the competitor with the slowest rate of diffusion (unconditional dispersal) has
the advantage in the reaction—diffusion context. This is also consistent with McPeek and Holt [9].
It is at least plausible that increasing the rate of diffusion might be a necessary tradeoff for the
ability to detect and follow environmental gradients, because some amount of random sampling
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of the environment in different locations might be needed to measure them. Our analysis suggests
that such a trade-off may sometimes be advantageous. Thus, a species might tend to evolve faster
rates of diffusion on a spatially varying but temporally constant environment if by doing so it
could improve its ability to move toward more favorable regions.

Appendix A

Proof of Lemma 3.1. There are two parts to the proof. First we observe that # depends
differentiably on p and « and that ¥ depends differentiably on v. Then we show that g¢ and 7
depend differentiably on g, v, and «. Both parts use the implicit function theorem.

The differentiable dependence of & on v follows by taking v = 1/ in Proposition 3.6 of [7] and
the remarks that follow it. The sense in which  depends differentiably on v is that the map
v — (v) is differentiable as a map from R into ¥ = {y € C***(Q) : dy/d% = 0 on 8Q}. To show
that # depends differentiably on p and o, we would rewrite the equation (2.5) for # as the

corresponding equilibrium equation for (2.7), where # = e~(@/#mx)g;

V4 4+ aVm - Vv + (m — e 3)H =0 on Q,
oW ‘ (A1)

-aﬁ=0 on 0.

Eq. (A.1) may be rewritten by multiplying by ele/mm,

uV - eI 4 (m — e@/Hm )@/ Wng — 0 on Q, C
7 (A.2)
9—@ ={0 on 0Q.
on
The continuous dependence of # and hence & on « and p then follows essentially as in Proposition
3.6 of Cantrell and Cosner [7]. To be more specific, we would (again) let

Y ={yeC*™(Q):0y/0i=0 ondQ} (A.3)

and define F: Rx R x Y — C*(Q) by (u, &, w)— uV- @By, 4 (m — emy)eimy, - The
remainder of the proof consists of computing D,,F, showing that D, F is invertible via eigenvalue
comparison, and applying the implicit function theorem. The calculations are very similar to those
in the proof of Proposition 3.6 of [7] so we omit the details.

The differentiable dependence of oo and 1o on g, v, and o (possibly via # and 7) can be shown by
arguments along the lines of Example 3.5 of [7] but there are enough differences that it seems
worthwhile to sketch the proof. We will consider the equation (2.14) for 1. Multiplying (2.14) by
e Am e may rewrite it as

V. ue(a/u)mv(p + (m = B)C(a/y)mqs — Ge(a/;t)m¢ in Q,
(A.4)
9@ =0 on 08,
on
in analogy to (A.2). Let the space Y be as in (A.3) and define the map G: (R*x Y)x
(Y x R) — C°(Q) x R as
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G(a, 1,0, ¢,0) = <v . ue(“/")VqB + (m — 5)e(a/u)m¢ - o*e(“/“)’"qb, / e(a/u)rrr¢2 dx — 1>.
Q
The linearization of G with respect to ¢ and ¢ is

D((;,,,,)G(oc, w0, ¢,0) (& p) = (V . ,ue("‘/")’"V§ + (m — l”,)e(a/u)mé _ O-e(a/u)mé

«pe("‘/“)’”qﬁ,z % /

Q

g/ im & dx) )

Let t} = 7o(pp, vo, %) be the principal eigenvalue of (A.4) (equivalently (2.13) or (2.14)) corre-
sponding to o= ag, p= Uy, and ¥ = B(vy), and let ¢y be the corresponding eigenfunction for
(A.4) normalized by

T
Q

To determine whether Dy, G is invertible at (o, gy, 9(vo), ¢, 75) We must consider the problem
V - @@/ BImgE 4 (m — B(vg))e o/ Homg 'cze(“"/’“’)”’é — pel/km g — o(x),

2 / e(“"/"")"’(,bofdx = .
Q

Since T is a simple eigenvalue for the differential operator in (A.5), standard elliptic theory based
on the Fredholm alternative implies that the first equation in (A.5) can be solved for { € ¥ for a
given g € C*(Q) provided

0= /[Pe(“"/"")'"¢o + gl dx
a

(A.5)

so that by the normalization of ¢, p is uniquely determined as p = ~lo ¢ogdx. The solution ¢
then has the form & = &, + s¢o, where &g is any particular solution and s € R. Substituting into
the second equation of (A.5) and again using the normalization of ¢ yields

2/ e(%/"(’)m(f)ofodx +25=r,
Q
which uniquely determines s as
S = (r/2) - / e(“ﬂ/“o)’"(]ﬁ(}éo dx’
Q

so that (A.5) has a unique solution in ¥ x R for any (g,r) € C°(2) x R. Standard results in oper-
ator theory and the theory of elliptic equations then imply that D4 )G is an invertible operator
from ¥ x R onto C°(Q) x R when (o, 4, 8) = (e, g, (vo)). It then follows from the implicit func-
tion theorem that the relation G(o, u, b, ¢, ) = 0 determines (¢,0) € ¥ x R as a differentiable
function of a, u, and o in a neighborhood of (o, g, 7(v)) in R x Y. Since 7(v) depends differen-
tiably on v and G(ap, 1o, D(0), P, T5) = 0, it then follows that 7o = To(y, v, &) with to(ug, vo, %) = 75
and with differentiable dependence on y,v, and « in some neighborhood of (ug, vo, %g). A similar
argument yields the analogous result for oy.
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A.1. Derivation of formula (3.4)

Recall the expansions in (3.3):

b=y +sp +ols), v=py+sv+o(s), o=as+o(s),
i=0+us+o(s), 7=0+uvs+o(s),
Yo =pof + s +o(s), B =pof+ d;s+ols),
og = 015+ 0(s), To =115+ ofs).
If we substitute these expressions into (2.1) (for # and 9) and (2.12) or (2.14) (for &, 9, Yo, ¢o, 0o,

and 7o) the terms of order 0 in s drop out. The terms of order s satisfy the following relations:
(for @)

V20 + 1V — V- (0,0Vm) + (m —20)uy =0 on Q, (A.6)
(for )

V20 + V20, 4 (m —20)v; =0 on Q, (A.7)
(for Yo and oy)

P V20 + V2 4 (m — 0)y, — mipef = o1pf  on Q, (A.8)
and (for ¢g and 7g)

Po V0 + V2 + upgVO - Vi + (m — 0)¢y — povi0 = 1ipf  on Q. (A.9)

Note that (A.9) is derived from (2.14). In (A.6)-(A.9) the terms representing state variables
(8,uy,vy1, @1, ) satisfy the boundary conditions:

00 _on 2¢Oy

W oR R (A10)
% _ 0% —0 onon .
b ~ Mg T om o
To analyze how oy depends on the perturbation, we write (A.8) as
#ovzl/’l + (m — 0)y, +P0V1V29 —u1pgl = a1py0 (A.11)
then multiply by 6 and integrate over Q. We have by the divergence theorem and (A.10)
/elepl dx = /(Vzﬁ)tﬁ, dx; / OV20dx = —/ |VO)* dx (A.12)
2] Q
so after using (3.1) the first two terms in (A.11) drop out. Dividing by p, then yields
—v,/|v9|2dx-/u192dx=01/92dx. (A.13)
Q Q Q

To evaluate the second integral in (A.13) we can write (A.6) as

toV:uy + (m — Ouy + u, V20 — V - (0,0Vm) = Ouy. (A.14)
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Multiplying (A.14) by 6, integrating over £, applying the divergence theorem, and using (3.1)
yields

d
/ 10 a”‘ ds — u,/|v0] dx+oc1/0V0 Vmdx — / eza’” dS:/u162dx. (A.15)
aQ Q

By the boundary condition (A.10) on u;, the first and last terms on the left in (A.15) cancel, so
that

-ul/]V@[zdx—l-oc]/GVG-dex-—-/u;szx. (A.16)
Q Q Q

Substituting (A.16) into {(A.13) and solving for ¢, yields
(,ul -v) [, |VO* dx — ay Jo,0V0- dex
Jo 0 dx
The analysis for g is roughly analogous to that for og. Multiplying (A.9) by 0, integrating, apply-

ing the divergence theorem, using (3.1) to eliminate some terms, and dividing by pg yields in anal-
ogy to (A.13) the relation

(A.17)

—-,ul/]V@}zdx—}—a]/GVG-dex—/v;Gde='cl/92dx. (A.18)
Q Q Q Q _ N
Multiplying (A.7) by 0, integrating, and using (3.1) yields
-V / V6| dx = / 0,6 dx; (A.19)
Q Q

substituting into (A.18) and solving for 7, yields
=) [o | VO dx + oy [, 6V6 - dex
Jo @ dx

Ty — —01 =

which is formula (3.4).

Proof of Lemma 3.2. By rescaling the spatial variables we may assume without loss of generality
that Ho = 1.
If Q = (a,b) C R is an interval, note that because 6 > 0 satisfies

@—F(m 6)60 =0 on (a,b),
dx? | (A.20)
% =0 atx=a,b :
d_x e RS Bt ]
the principal eigenvalue of
dZ
20 (m—0)b=pp on (ab)
d¢

E;:O at x=a,b
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is zero, with a corresponding eigenfunction that is a multiple of 6. Thus, the principal eigenvalue
p1 for the corresponding problem with Dirichlet boundary conditions must be negative. Observe
that differentiating (A.20) with respect to x leads to the equation

dc /do d9 6dm 6d6
dx2<dx)+( dx+“‘d';c‘~~”‘a;- 0 on (a b) (A21)

Multiplying (A.21) by and integrating (using mtegratmn by parts in the first term) yields

/f{'%(%)} + (m -~ 9< >} /9%%6136 (A.22)
—-/a 9@) dx = 0.

By the boundary conditions on 6 in (A.20), df/dx satisfies Dirichlet boundary conditions, so by
the variational characterization of the principal eigenvalue we have

R nle)
o [ (&) asco

Since the third term in (A.22) is clearly negative (because 6 > 0) we must have f 04292 dx > 0, as
claimed. For Q C R” the essential idea of the proof is the same but the analysis i 1s more compli-
cated and requires Q to be convex. (This is not surprising, because it can be shown that if Q is
nonconvex then it is possible that directed motion upward along resource gradients may some-

times be detrimental to a single population, even with no-flux boundary conditions (see [9]).
The technical issues addressed here are similar to those in that paper.) Suppose that 6 satisfies

AG+ (m(x) —0)0=0 in Q,

A.23
6_? =0 on 0€, ( )
or
where A = V2. Differentiating (A.23) and taking the dot product with V8 we have
VO V(AO) + VO (m —20) +0V0-Ym =0 in Q. (A.24)

Using the identity

V0 - V(A0) + |Hess 0> = 1A(VO]),
we have

%A(lV@[Z) — |Hess 6] + [m — 26]|VO]® +6V0-VYm =0 in Q. (A.25)
Integrating (A.25) over 2 we have

/ 6V6 . Vmdx = / ([Hess 0 — (m — 20)[Vo|dx — = [ 2 (voP)ds. (A.26)
Q Q 2 Joq O
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As in the case of Q C R, note that § > 0 in (A.23) so that the principal eigenvalue p; of
Vi + (m—0)¢p =pd in Q,

A.27
—a-(_—,é =0 ondQ ’ ( )
on
is zero. Thus, by the variational characterization of eigenvalues, we have .
JEor +m—0)as < py [ gar< (A28)

for any ¢ € Wl’z(Q). If € W*2(Q) then for each x; we have

JI1V0 P+ n = 032 e <0
summing over i yields

/Q [~ Hess ¥ + (m — 0)|Vy[}]dx < 0. (A.29)
We may rewrite (A.26) as

/Q 6V0 . Vmdsx = /Q ([Etess 6 — (m — 6)| VO] dx

+ / ovolax—+ [ Z(vep)ds (A.30)
Io} 2 30 al’l

1 [0
> 2 — —— 2 .
> /Qelve[ dx 2/aﬁ([v9| )ds

If Q is convex then since 06/07 = 0 on 0Q it follows from results of Casten and Holland [19] and
Matano {20] that

(IV0| )ds < 0. (A.31)

30 an

Since we are assuming m is nonconstant, § must also be nonconstant, so the integral on the left
side of (A.30) must be strictly positive.
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